perm filename PAPER.TEX[UG,TEX] blob sn#567400 filedate 1981-02-24 generic text, type C, neo UTF8
COMMENT ⊗   VALID 00002 PAGES
C REC  PAGE   DESCRIPTION
C00001 00001
C00002 00002	\input basic
C00020 ENDMK
C⊗;
\input basic
\magnify{1200}
\font H=cmr12
\def\TEX{\hbox{\bf T\hskip-.17em\raise1.2ex\hbox{{E}\hskip-.3em\raise-0.60ex\hbox{X}}}}
\def\heading{\:H}
\parskip 5pt
\output{\baselineskip 18pt\ctrline{{\sl Exercise in \TEX}/Uri Geva}
\vskip .5in
\page\ctrline{\curfont a\count0}\advcount0}
\vskip .5in
{\bf Corollary 17.2.}\quad {\sl Suppose $(a,p)=1.$ Then $(a↑2/p)=1$, 
$(ab/p)=(a/p)(b/p)$, and if $a≡b \mod{p} $, then $(a/p)=(b/p).$}

{\it Note.}\quad The equation $({ab\over p})=(a/p)(b/p)$ says that the product of two
residues is a residue, the product of two non-residues is a residue, and the
product of are sidue and a non--residue is a non---residue.

The problem of deciding. . . .  If $a>1$, and $(a,p)=1$, 
suppose $a=\prod q↓i↑{β↑i}$. Then $(a/p)=\prod (q↓i/p)↑{β↓i}$.
$$(a/p)=\prod↓{β↓{i}\hbox{odd}} (q↓i/p).$$
If $a<-1$, then
$$(a/p)=(-1)↑{(p-1)/2} \prod↓{β↓{i}\hbox{odd}}(q↓i/p).$$
{\sl Example.} Find (--540/7)=. . . .
$$L↓1:y= {1\over2}$$
$$L↓2:y= {q-1\over2}$$

\vfill\end